液晶纳米粒作为药物载体的研究进展

单倩倩, 桂志萍, 桂双英

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (7) : 485-489.

PDF(1709 KB)
PDF(1709 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (7) : 485-489. DOI: 10.11669/cpj.2018.07.001
综 述

液晶纳米粒作为药物载体的研究进展

  • 单倩倩1, 桂志萍1, 桂双英1,2*
作者信息 +

Research Progress of Liquid Crystalline Nanoparticles as Drug Delivery System

  • SHAN Qian-qian1, GUI Zhi-ping1, GUI Shuang-ying1,2*
Author information +
文章历史 +

摘要

液晶纳米粒是由一定浓度的两亲性脂质在水中自组装分散形成的纳米粒,具有生物相容性高、生物黏附性好、载药量大等优点,其独特内部结构能够包封不同性质的药物,适合多种给药途径。液晶纳米粒作为一种新型药物载体在药物递送方面显示出广阔的应用前景。笔者对液晶纳米粒的形成,制备工艺,表征及其作为载药体的应用予以归纳和总结,为液晶纳米粒的进一步研究提供参考。

Abstract

Liquid crystalline nanoparticles are composed of a certain concentration of amphiphilic lipid self-assembly in water. The attractiveness of this formulation is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Liquid crystalline nanoparticles, as a novel drug delivery system, have great promise in drug delivery. The carrier materials, preparation methods, characterization and applications of liquid crystalline nanoparticles were reviewed based on relevant articles published in recent years to provide reference for further study of liquid crystal nanoparticles.

关键词

两亲性脂质 / 立方液晶纳米粒 / 六角液晶纳米粒 / 制备工艺 / 药物载体

Key words

amphiphilic lipid / cubosome / hexosome / preparation method / drug delivery

引用本文

导出引用
单倩倩, 桂志萍, 桂双英. 液晶纳米粒作为药物载体的研究进展[J]. 中国药学杂志, 2018, 53(7): 485-489 https://doi.org/10.11669/cpj.2018.07.001
SHAN Qian-qian, GUI Zhi-ping, GUI Shuang-ying. Research Progress of Liquid Crystalline Nanoparticles as Drug Delivery System[J]. Chinese Pharmaceutical Journal, 2018, 53(7): 485-489 https://doi.org/10.11669/cpj.2018.07.001
中图分类号: R944   

参考文献

[1] GUO C, WANG J, CAO F, et al. Lyotropic liquid crystal systems in drug delivery[J]. Drug Discov Today, 2010, 15(23):1032-1040.
[2] AZMI I D, MOGHIMI S M, YAGHMUR A. Cubosomes and hexosomes as versatile platforms for drug delivery [J]. Ther Deliv, 2015, 6(12):1347-1364.
[3] CHONG J Y T, MULET X, WADDINGTON L J, et al. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions[J]. Langmuir, 2012, 28(25):9223-9232.
[4] ZHAI J, WADDINGTON L, WOOSTER T J, et al. Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles[J]. Langmuir, 2011, 27(24):14757-14766.
[5] ELNAGGAR Y S, ETMAN S M, ABDELMONSIF D A, et al. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer′s disease: pharmaceutical, biological, and toxicological studies[J]. Int J Nanomed, 2015, 10(1):5459-5473.
[6] ELGINDY N A, MEHANNA M M, MOHYELDIN S M. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery [J]. Int J Pharm, 2016, 501(1-2): 167-179.
[7] AZHARI H, STRAUSS M, HOOK S, et al. Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier[J]. Eur J Pharm Biopharm, 2016, 104:148-155.
[8] RAJABALAYA R, MUSA M N, KIFLI N, et al. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals[J]. Drug Des Develop Ther, 2017, 11:393-406.
[9] CHEN Y, MA P, GUI S. Cubic and hexagonal liquid crystals as drug delivery systems[J]. Biomed Res Int, 2014, 2014(1):1-12.
[10] JAIN S, BHANKUR N, SWARNAKAR N K, et al. Phytantriol based “Stealth” lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel[J]. Pharm Res, 2015,32(10):3282-3292.
[11] LUO Q, LIN T, ZHANG C Y, et al. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: preparation, cytotoxicity and intracellular uptake[J]. Int J Pharm, 2015, 493(1-2):30-39.
[12] PENG X, ZHOU Y, HAN K, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin[J]. Drug Des Develop Ther, 2015, 9:4209-4218.
[13] ACHOURI D, HORNEBECQ V, PICCERELLE P, et al. Self-assembled liquid crystalline nanoparticles as an ophthalmic drug delivery system. Part I: influence of process parameters on their preparation studied by experimental design[J]. Drug Dev Ind Pharm, 2015, 41(1):109-115.
[14] AMAR-YULI I, WACHTEL E, SHOSHAN E B, et al. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer[J]. Langmuir, 2007, 23(7):3637-3645.
[15] DONG A W, FONG C, WADDINGTON L J, et al. Application of positron annihilation lifetime spectroscopy (PALS)to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes[J]. Phys Chem Chem Phys, 2014, 17(3):1705-1715.
[16] KUNTSCHE J, HORST J C, BUNJES H. Cryogenic transmission electron microscopy (cryo-TEM)for studying the morphology of colloidal drug delivery systems[J]. Int J Pharm, 2011,417(1):120-137.
[17] WANG Z N, ZHENG L Q. Progress in cubic phase of lipid liquid crystal as drug delivery system [J]. Prog Chem, 2005, 17(3):417-422.
[18] MELI V, CALTAGIRONE C, FALCHI A M, et al. Docetaxel-loaded fluorescent liquid-crystalline nanoparticles for cancer theranostics[J]. Langmuir, 2015, 31(35):9566-9575.
[19] DONG Y D, BOYD B J. Applications of X-ray scattering in pharmaceutical science[J]. Int J Pharm, 2011, 417(1-2):101-111.
[20] AVACHAT A M, PARPANI S S. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz[J]. Colloids Surf B Biointerfaces, 2015, 126:87-97.
[21] BOYD B J, RIZWAN S B, DONG Y D, et al. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms[J]. Langmuir, 2007, 23(23):12461-12464.
[22] JIN X, ZHANG Z H, LI S L, et al. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption[J]. Fitoterapia, 2013, 84(1):64-71.
[23] NGUYEN T H, HANLEY T, PORTER C J, et al. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration[J]. J Controlled Release, 2011, 153(2):180-186.
[24] YANG Z, TAN Y, CHEN M, et al. Development of amphotericin B-loaded cubosomes through the Solemuls technology for enhancing the oral bioavailability[J]. AAPS Pharm Sci Tech, 2012, 13(4):1483-1491.
[25] BOYD B J, KHOO S M, WHITTAKER D V, et al. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats[J]. Int J Pharm, 2007, 340(1-2):52-60.
[26] LAJ J, LU Y, YIN Z, et al. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles[J]. Int J Nanomed, 2010, 5(1):13-23.
[27] YANG Z, CHEN M, YANG M, et al. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection[J]. Int J Nanomed, 2014, 9(1):327-336.
[28] CERVIN C, VANDOOLAEGHE P, NISTOR C, et al. A combined in vitro and in vivo study on the interactions between somatostatin and lipid-based liquid crystalline drug carriers and bilayers[J]. Eur J Pharm Sci, 2009, 36(4-5): 377-385.
[29] NASR M, GHORAB M K, ABDELAZEM A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting[J]. Acta Pharm Sin B(药学学报英文), 2015, 5(1):79-88.
[30] THAPA R K, YOO B K. Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation[J]. J Dermatol Treat, 2014, 25(1):22-25.
[31] LOPES L B, SPERETTA F F, BENTLEY M V. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems[J]. Eur J Pharm Sci, 2007, 32(3):209-215.
[32] GAN L, HAN S, SHEN J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability[J]. Int J Pharm, 2010, 396(1-2):179-187.
[33] SWARNAKAR N K, JAIN V, DUBEYV, et al. Enhanced oromucosal delivery of progesterone via hexosomes[J]. Pharm Res, 2007, 24(12):2223-2230.
[34] CLOGSTON J, CRACIUN G, HART D J, et al. Controlling release from the lipidic cubic phase by selective alkylation [J]. J Controlled Release, 2005,102(2):441-461.
[35] BARAUSKAS J, JOHNSSON M, TIBERG F. Self-assembled lipid superstructures: beyond vesicles and liposomes [J]. Nano Lett, 2005,5(8):1615-1619.
[36] BARAUSKAS J, CERVIN C, JANKUNEC M, et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes [J]. Int J Pharm, 2010, 391(1):284-291.
[37] TRAN N, MULET X, HAWLEY A M, et al. Nanostructure and cytotoxicity of self-assembled monoolein-capric acid lyotropic liquid crystalline nanoparticles[J]. Rsc Adv, 2015, 5(34):26785-26795.

基金

国家自然科学基金项目资助(81274099); 2016年度校级探索性科研项目资助(2016ts066)
PDF(1709 KB)

Accesses

Citation

Detail

段落导航
相关文章

/